HIGH THERMAL CONDUCTIVITY UO₂-BeO NUCLEAR FUEL:
NEUTRONIC PERFORMANCE ASSESSMENTS AND OVERVIEW
OF FABRICATION

A Thesis

by

MICHAEL JAMES NARAMORE

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

August 2010

Major Subject: Nuclear Engineering
HIGH THERMAL CONDUCTIVITY UO₂-BeO NUCLEAR FUEL: NEUTRONIC PERFORMANCE ASSESSMENTS AND OVERVIEW OF FABRICATION

A Thesis

by

MICHAEL JAMES NARAMORE

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Sean M. McDeavitt
 Jean C. Ragusa
Committee Members, Karen Vierow
 Miladin Radovic
Head of Department, Raymond J. Juzaitis

August 2010

Major Subject: Nuclear Engineering
ABSTRACT

High Thermal Conductivity UO$_2$-BeO Nuclear Fuel: Neutronic Performance Assessments and Overview of Fabrication. (August 2010)

Michael James Naramore, B.A., Texas A&M University
Co-Chairs of Advisory Committee, Dr. Sean M. McDeavitt
Dr. Jean C. Ragusa

The objective of this work was to evaluate a new high conductivity nuclear fuel form. Uranium dioxide (UO$_2$) is a very effective nuclear fuel, but it’s performance is limited by its low thermal conductivity. The fuel concept considered here is a ceramic-ceramic composite structure containing UO$_2$ with up to 10 volume percent beryllium oxide (BeO). Beryllium oxide has high thermal conductivity, good neutron moderation properties, neutron production from an (n,2n) reaction, and it is chemically stable with uranium at high temperatures. The UO$_2$-BeO fuel concept employs a continuous lattice of BeO within the microstructure of the fuel in order to significantly increase the thermal conductivity of the fuel.

In order to better understand the effect of this fuel concept on reactor operations 2D infinite lattice neutronic simulations for a typical pressurized water reactor fuel assembly were performed using the code DRAGON. Parametric analysis of the beginning of cycle (BOC) effect of BeO and its corresponding temperature increase revealed that the introduction of 5% by volume BeO into UO$_2$ fuel results in a ~400 pcm increase in BOC reactivity, while the 100 K temperature decrease with the introduction of 10% by volume BeO increased the BOC reactivity by ~350 pcm. Cycle length estimates for a PWR were performed with three and four-batch cycles while keeping the uranium-235 mass constant and the introduction of 10% by volume BeO was found to have a ~20 day
increase in reactor operation, a 4000-5000 MWd/tHM increase in burnup, and a 2800-2900 pcm increase in BOC reactivity.

A portion of the work documented here includes the establishment of a UO$_2$-BeO fabrication method with the necessary equipment. The description of a processing vessel is provided and the step-by-step procedures for fabrication are described. The processing vessel has a linear variable differential transducer equipped in order to characterize the sintering behavior.
ACKNOWLEDGEMENTS

To my fiancée and my parents and sister for all of their support while pursuing my Master’s Degree. I would also like to acknowledge my professor and committee members, Dr. Sean McDeavitt, Dr. Jean Ragusa, Dr. Karen Vierow, and Dr. Miladin Radovic. I would like to thank Michael Myers for helping me learn Perl and I would like to thank all of my colleagues and the undergraduate assistants who helped me with this project, Jeffrey Hausaman, Aaron Totemeier, Adam Parkinson, Robert Miller, and Spencer Mickum. I’d also like to thank IBC Advanced Alloys and Jim Malone in particular for their advice and help with this project.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 The Problem | 1
1.2 Thermal Conductivity in a Typical Nuclear Fuel Pellet
 1.2.1 Importance of Thermal Conductivity in Nuclear Fuels | 2
 1.2.2 Thermal Conduction Mechanisms | 3
 1.2.3 Determinants of Thermal Conductivity
 1.2.3.1 Temperature | 4
 1.2.3.2 Nonstoichiometric Effects on Thermal Conductivity
 1.2.3.2.1 Porosity | 4
 1.2.3.2.2 Oxygen to Metal Fuel Ratio | 5
 1.2.3.2.3 Pellet Cracking | 5
 1.2.3.4 Irradiation and Burnup | 5
 1.2.4 Neutronics Effect of BeO | 5
1.3 High Conductivity Concept Description | 6
1.4 Overview | 8

2 BACKGROUND

2.1 Beryllium Oxide Past Uses | 9
2.2 New BeO Concept Fuels | 10
2.3 Silicon Carbide as a High Conductivity Additive | 11
2.4 Thermal Conductivity and Fuel Performance Modeling | 14

3 NEUTRONICS

3.1 Mechanics
 3.1.1 DRAGON | 17
 3.1.1.1 The DRAGON Code | 17
 3.1.1.2 The Input Deck | 17