ESTABLISHING METHODS FOR RECYCLING SPENT ZIRCALOY CLADDING
USING A HYDRIDE-DEHYDRIDE PROCESSING ROUTE

A Project Report

Submitted to the Faculty

of

Purdue University Nuclear Engineering

by

Dustin T. Kraemer

Requirement for the Degree

of

Master of Science in Nuclear Engineering

August 2005
“Deep is the well of truth and long does it take to know what has fallen into its depths”
- Friedrich Nietzsche, 1844-1900
ACKNOWLEDGEMENTS

I would like to thank Dr. Sean M. McDeavitt, my major professor, for accepting me as his graduate student and contributing the time and motivation to help me succeed. I would like to thank the faculty of Nuclear Engineering for their support and encouragement in my endeavors at Purdue University. I'd also like to thank Dr. S. Revankar, Dr. R. Taleyarkhan, and Dr. R. Trice for serving as members of my advisory committee. I would like to thank Paul Mews and Eric Howell for their help in building the glovebox. In addition, I would like to thank Adam Parkinson, who will be continuing this research, for his help in running recent experiments and evaluating some of the results.

I would like to acknowledge the U.S. Department of Energy’s Nuclear Energy Research Initiative for the support of this research project (NERI ID NO. DE-FC07-05ID14656).

I want to thank the United States Navy for allowing me to pursue my master’s degree prior to accepting my commission. I would especially like to thank my friends, who have come and gone, for their understanding while I chased my goals. Finally, I would like to thank my family for their continued support in all I do.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>1. OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Justification for Research</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Present Work</td>
<td>4</td>
</tr>
<tr>
<td>2. BACKGROUND</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Zirconium Hydride</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Zirconium Oxide</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Trace Element Interactions</td>
<td>12</td>
</tr>
<tr>
<td>3. EXPERIMENTAL EQUIPMENT AND MATERIALS</td>
<td>13</td>
</tr>
<tr>
<td>3.1 Experimental Materials and Specimen Preparation</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Glovebox Design</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Hydride Process Design</td>
<td>17</td>
</tr>
<tr>
<td>3.4 Dehydride Process Design</td>
<td>22</td>
</tr>
<tr>
<td>4. RESULTS</td>
<td>24</td>
</tr>
<tr>
<td>4.1 Experiment Zy1</td>
<td>28</td>
</tr>
<tr>
<td>4.2 Experiment Zy2</td>
<td>30</td>
</tr>
<tr>
<td>4.3 Experiment Zy3</td>
<td>31</td>
</tr>
<tr>
<td>4.4 Experiment Zy4</td>
<td>32</td>
</tr>
<tr>
<td>4.5 Experiment Zy5</td>
<td>33</td>
</tr>
<tr>
<td>4.6 Experiment Zy6</td>
<td>34</td>
</tr>
<tr>
<td>4.7 Experiment Zy7</td>
<td>35</td>
</tr>
<tr>
<td>4.8 Experiment Zy8</td>
<td>36</td>
</tr>
<tr>
<td>4.9 Experiment Zy9</td>
<td>37</td>
</tr>
<tr>
<td>4.10 Experiment Zy10</td>
<td>38</td>
</tr>
<tr>
<td>4.11 Experiment Zy11</td>
<td>39</td>
</tr>
<tr>
<td>4.12 Experiment Zy12</td>
<td>40</td>
</tr>
<tr>
<td>4.13 Experiment Zy13</td>
<td>41</td>
</tr>
<tr>
<td>4.14 Experiment Zy14</td>
<td>43</td>
</tr>
<tr>
<td>4.15 Dehydride Apparatus Shakedown Test</td>
<td>46</td>
</tr>
</tbody>
</table>
5. DISCUSSION OF RESULTS ... 49

5.1 Hydride Experiments .. 49
5.2 Dehydride Test Apparatus Shakedown 54

6. SUMMARY AND RECOMMENDATIONS 56

LIST OF REFERENCES .. 59

APPENDICES

Appendix A: Variac calibration curves................................. 62
Appendix B: Experiment temperature profiles 65
Appendix C: Procedures... 72
Appendix D: Equipment Photographs.................................. 75

VITA .. 84
ABSTRACT

Materials handling and processing equipment and early process development equipment were developed to recycle spent nuclear fuel cladding (i.e., Zircaloy) into a metal powder that may be used for advanced nuclear fuel fabrication. An inert atmosphere glove box for preparation and analyzing of specimens, a hydride process system, and a dehydride process system were designed and fabricated for the purpose of establishing feasibility of recycling Zircaloy cladding hulls from spent nuclear fuel. Initial experiment analysis established criteria for hydriding of tubular Zircaloy specimens. It was found that brittle hydrides can be formed from Zircaloy tubes and crushed to fine powder. The designed dehydride process was built to decompose the zirconium hydride powder formed through the hydride process. Initial analysis of the hydriding apparatus and design recommendations are made.
VITA

Dustin Thomas Kraemer was born in 1980 in Wadsworth, OH, USA, but attended school in nearby Doylestown, Ohio. He has been a student at Purdue University since 1999 and has received the following degree: Bachelor of Science in Nuclear Engineering in December of 2003 while completing the Naval ROTC curriculum. He will receive his Master of Science in Nuclear Engineering degree in August of 2005. He was commissioned as an Ensign in the United States Navy in July of 2005. He will pursue his nuclear career as a naval submarine officer in the United States Navy.